Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 24087, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916533

RESUMO

Konservat-Lagerstätten-deposits with exceptionally preserved fossils-vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten-Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) -and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps.

2.
Depos Rec ; 6(1): 62-74, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140241

RESUMO

During the earliest Triassic microbial mats flourished in the photic zones of marginal seas, generating widespread microbialites. It has been suggested that anoxic conditions in shallow marine environments, linked to the end-Permian mass extinction, limited mat-inhibiting metazoans allowing for this microbialite expansion. The presence of a diverse suite of proxies indicating oxygenated shallow sea-water conditions (metazoan fossils, biomarkers and redox proxies) from microbialite successions have, however, challenged the inference of anoxic conditions. Here, the distribution and faunal composition of Griesbachian microbialites from China, Iran, Turkey, Armenia, Slovenia and Hungary are investigated to determine the factors that allowed microbialite-forming microbial mats to flourish following the end-Permian crisis. The results presented here show that Neotethyan microbial buildups record a unique faunal association due to the presence of keratose sponges, while the Palaeotethyan buildups have a higher proportion of molluscs and the foraminifera Earlandia. The distribution of the faunal components within the microbial fabrics suggests that, except for the keratose sponges and some microconchids, most of the metazoans were transported into the microbial framework via wave currents. The presence of both microbialites and metazoan associations were limited to oxygenated settings, suggesting that a factor other than anoxia resulted in a relaxation of ecological constraints following the mass extinction event. It is inferred that the end-Permian mass extinction event decreased the diversity and abundance of metazoans to the point of significantly reducing competition, allowing photosynthesis-based microbial mats to flourish in shallow water settings and resulting in the formation of widespread microbialites.

3.
Sci Rep ; 10(1): 2176, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034228

RESUMO

The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Fósseis , Moluscos/fisiologia , Termotolerância , Animais , Mudança Climática , Foraminíferos/fisiologia , Sedimentos Geológicos , Oceanos e Mares
4.
Geobiology ; 17(5): 523-535, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120196

RESUMO

Thrombolite and stromatolite habitats are becoming increasingly recognized as important refuges for invertebrates during Phanerozoic Oceanic Anoxic Events (OAEs); it is posited that oxygenic photosynthesis by cyanobacteria in these microbialites provided a refuge from anoxic conditions (i.e., the "microbialite refuge" hypothesis). Here, we test this hypothesis by investigating the distribution of ~34, 500 benthic invertebrate fossils found in ~100 samples from a microbialite succession that developed following the latest Permian mass extinction event on the Great Bank of Guizhou (South China), representing microbial (stromatolites and thrombolites) and non-microbial facies. The stromatolites were the least taxonomically diverse facies, and the thrombolites also recorded significantly lower diversities when compared to the non-microbial facies. Based on the distribution and ornamentation of the bioclasts within the thrombolites and stromatolites, the bioclasts are inferred to have been transported and concentrated in the non-microbial fabrics, that is, cavities around the microbial framework. Therefore, many of the identified metazoans from the post-extinction microbialites are not observed to have been living within a microbial mat. Furthermore, the lifestyle of many of the taxa identified from the microbialites was not suited for, or even amenable to, life within a benthic microbial mat. The high diversity of oxygen-dependent metazoans in the non-microbial facies on the Great Bank of Guizhou, and inferences from geochemical records, suggests that the microbialites and benthic communities developed in oxygenated environments, which disproves that the microbes were the source of the oxygenation. Instead, we posit that microbialite successions represent a taphonomic window for exceptional preservation of the biota, similar to a Konzentrat-Lagerstätte, which has allowed for diverse fossil assemblages to be preserved during intervals of poor preservation.


Assuntos
Biodiversidade , Fósseis , Invertebrados/classificação , Animais , China , Sedimentos Geológicos/análise
5.
PLoS One ; 12(8): e0181637, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28783733

RESUMO

Crustose coralline algae (CCA) are key producers of carbonate sediment on reefs today. Despite their importance in modern reef ecosystems, the long-term relationship of CCA with reef development has not been quantitatively assessed in the fossil record. This study includes data from 128 Cenozoic coral reefs collected from the Paleobiology Database, the Paleoreefs Database, as well as the original literature and assesses the correlation of CCA abundance with taxonomic diversity (both corals and reef dwellers) and framework of fossil coral reefs. Chi-squared tests show reef type is significantly correlated with CCA abundance and post-hoc tests indicate higher involvement of CCA is associated with stronger reef structure. Additionally, general linear models show coral reefs with higher amounts of CCA had a higher diversity of reef-dwelling organisms. These data have important implications for paleoecology as they demonstrate that CCA increased building capacity, structural integrity, and diversity of ancient coral reefs. The analyses presented here demonstrate that the function of CCA on modern coral reefs is similar to their function on Cenozoic reefs; thus, studies of ancient coral reef collapse are even more meaningful as modern analogues.


Assuntos
Biodiversidade , Recifes de Corais , Rodófitas/fisiologia , Rodófitas/metabolismo
6.
Sci Rep ; 7(1): 9465, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842582

RESUMO

The evolutionary success of reef-building corals is often attributed to photosymbiosis, a mutualistic relationship scleractinian corals developed with zooxanthellae; however, because zooxanthellae are not fossilized, it is difficult (and contentious) to determine whether ancient corals harbored symbionts. In this study, we analyze the δ15N of skeletal organic matrix in a suite of modern and fossil scleractinian corals (zooxanthellate- and azooxanthellate-like) with varying levels of diagenetic alteration. Significantly, we report the first analyses that distinguish shallow-water zooxanthellate and deep-water azooxanthellate fossil corals. Early Miocene (18-20 Ma) corals exhibit the same nitrogen isotopic ratio offset identified in modern corals. These results suggest that the coral organic matrix δ15N proxy can successfully be used to detect photosymbiosis in the fossil record. This proxy will significantly improve our ability to effectively define the evolutionary relationship between photosymbiosis and reef-building through space and time. For example, Late Triassic corals have symbiotic values, which tie photosymbiosis to major coral reef expansion. Furthermore, the early Miocene corals from Indonesia have low δ15N values relative to modern corals, implying that the west Pacific was a nutrient-depleted environment and that oligotrophy may have facilitated the diversification of the reef builders in the Coral Triangle.


Assuntos
Antozoários/fisiologia , Fósseis , Fotossíntese , Simbiose , Animais , Evolução Biológica , Recifes de Corais , Isótopos de Nitrogênio/análise , Nutrientes/metabolismo , Oceano Pacífico
7.
Science ; 335(6072): 1058-63, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383840

RESUMO

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.


Assuntos
Organismos Aquáticos , Ecossistema , Fenômenos Geológicos , Água do Mar/química , Adaptação Biológica , Animais , Atmosfera , Dióxido de Carbono , Carbonatos/análise , Extinção Biológica , Previsões , Fósseis , Concentração de Íons de Hidrogênio , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...